Www Moons in the Soror Sistem



Vast regions of dark dunes also extend across Titan's exotic landscape, especially around its equatorial regions. Unlike Earth's sand, the "sand" that creates Titan's dunes is composed of dark grains of hydrocarbon that resemble coffee grounds. The tall linear dunes of this misty moisty moon-world appear to be quite similar to those seen in the desert of Namibia in Africa. Because Titan's surface is pockmarked by relatively few impact craters, its surface is considered to be quite young. Older surfaces display heavier cratering than more youthful surfaces, whose craters have been "erased" by resurfacing. This resurfacing is caused by processes that cover the scars left by old impacts as time goes by. Our own planet is similar to Titan in this respect. The craters of Earth are erased by the ongoing processes of flowing liquid (water on Earth), powerful winds, and the recycling of Earth's crust as a result of plate-tectonics. These processes also occur on Titan, but in modified forms. In particular, the shifting of the ground resulting from pressures coming from beneath (plate tectonics), also appear to be at work on this veiled moon-world. However, planetary scientists have not seen signs of plates on Titan that are analogous to those of our own planet. The tiny moon--which for now has been designated S/2015 (136472) 1, and playfully nicknamed MK 2, for short--is more than 1,300 times dimmer than Makemake itself. MK 2 was first spotted when it was about 13,000 miles from its dwarf planet parent, and its diameter is estimated to be about 100 miles across. Makemake is 870 miles wide, and the dwarf planet, which was discovered over a decade ago, is named for the creation deity of the Rapa Nui people of Easter Island. Jupiter is circled by a bewitching duo of moons that are potentially capable of nurturing delicate tidbits of life as we know it. Like its more famous sister-moon, Europa, Ganymede might harbor a life-loving subsurface ocean of liquid water in contact with a rocky seafloor. This special arrangement would make possible a bubbling cauldron of fascinating chemical reactions--and these reactions could potentially include the same kind that allowed life to evolve on our own planet!