The Milky Way Galaxy

The Milky Way[a] is the galaxy that contains our Solar System, with the name describing the galaxy’s appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλαξίας κύκλος (galaxías kýklos, “milky circle”). From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from its outer rim. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies.



The moon, for the most part, influences our emotions. In certain phases of the moon, the predictions made through the study of astrological phenomena that would otherwise occur fail to happen, because our emotions do not produce the reactions to the astrological phenomena that would normally be expected. In other phases of the moon, astrological phenomena of planetary alignments and their effect on the Zodiac sun signs are not altered from their original reading. Launched as GRAIL A and GRAIL B in September 2011, the probes were renamed Ebb and Flow by schoolchildren in Montana. The probes operated in almost circular orbit near the lunar poles at an altitude of approximately 34 miles, until their mission came to an end in December 2012. The distance between the twin probes altered a bit as they soared over areas of lesser and greater gravity that were caused by visible topological features on the Moon's surface, such as impact craters and mountains--as well as by masses that were secreted beneath the lunar surface. The astronomers observed this effect in the upper layer of the lunar crust, termed the megaregolith. This layer is heavily pockmarked by relatively small craters, measuring only 30 kilometers or less in diameter. In contrast, the deeper layers of lunar crust, that are scarred by larger craters, appear not to have been as badly battered, and are, therefore, less porous and fractured.