Telescope to See Planets



Have you ever wondered what may be the purpose of the moon? Well, the moon is the shiny beacon that lights up the night as the sun lights up the day. This amber body is quite shy and doesn't always show itself, but when it does, the moon's brilliance overpowers the darkness. The surface of the moon inspires astronomers around the globe who religiously watch as our incandescent orb passes serenely through its natural cycle, but if you are an avid planet observer you will come to realise that the reflecting light from the moon through the telescope lens may interfere with your ability to clearly view even our closest planets. For this reason many planet watches believe the new moon cycle is the perfect time to catch a glimpse of another world. Therefore, the results of the new study support the idea that primitive life could potentially have evolved on Ganymede. This is because places where water and rock interact are important for the development of life. For example, some theories suggest that life arose on our planet within hot, bubbling seafloor vents. Before the new study, Ganymede's rocky seafloor was believed to be coated with ice--not liquid. This would have presented a problem for the evolution of living tidbits. The "Dagwood sandwich" findings, however, indicate something else entirely--the first layer on top of Ganymede's rocky core might be made up of precious, life-sustaining salty water. Comets are really traveling relic icy planetesimals, the remnants of what was once a vast population of ancient objects that contributed to the construction of the quartet of giant, gaseous planets of the outer Solar System: Jupiter, Saturn, Uranus, and Neptune. Alternatively, the asteroids--that primarily inhabit the region between Mars and Jupiter termed the Main Asteroid Belt--are the leftover rocky and metallic planetesimals that bumped into one another and then merged together to form the four rocky and metallic inner planets: Mercury, Venus, Earth, and Mars. Planetesimals of both the rocky and icy kind blasted into one another in the cosmic "shooting gallery" that was our young Solar System. These colliding objects also merged together to create ever larger and larger bodies--from pebble size, to boulder size, to mountain size--and, finally, to planet size.