SpaceX Dragon Capsule Heat Shield

On 23 February 2009, SpaceX announced that its chosen phenolic-impregnated carbon ablator heat shield material, PICA-X, had passed heat stress tests in preparation for Dragon’s maiden launch. The primary proximity-operations sensor for the Dragon spacecraft, the DragonEye, was tested in early 2009 during the STS-127 mission, when it was mounted near the docking port of the Space Shuttle Endeavour and used while the Shuttle approached the International Space Station. The DragonEye’s lidar and thermography (thermal imaging) abilities were both tested successfully. The COTS UHF Communication Unit (CUCU) and Crew Command Panel (CCP) were delivered to the ISS during the late 2009 STS-129 mission. The CUCU allows the ISS to communicate with Dragon and the CCP allows ISS crew members to issue basic commands to Dragon. In summer 2009, SpaceX hired former NASA astronaut Ken Bowersox as vice president of their new Astronaut Safety and Mission Assurance Department, in preparation for crews using the spacecraft.

Makemake is about a fifth as bright as Pluto. However, despite its comparative brightness, it was not discovered until well after a number of much fainter KBOs had been detected. Most of the scientific hunts for minor planets are conducted relatively close to the region of the sky that the Sun, Earth's Moon, and planets appear to lie in (the ecliptic). This is because there is a much greater likelihood of discovering objects there. Makemake is thought to have evaded detection during earlier searches because of its relatively high orbital inclination, as well as the fact that it was at its greatest distance from the ecliptic at the time of its discovery--in the northern constellation of Coma Berenices. A billion years ago, our Moon was closer to Earth than it is now. As a result, it appeared to be a much larger object in the sky. During that ancient era, if human beings had been around to witness such a sight, it would have been possible to see the entire Moon--not merely the one near side face that we see now. A billion years ago, it took our Moon only twenty days to orbit our planet, and Earth's own day was considerably shorter--only eighteen hours long. Stupendous, almost unimaginably enormous tides, that were more than a kilometer in height, would ebb and flow every few hours. However, things changed, as the lunar orbit around our primordial planet grew ever wider and wider. Annually, Earth's Moon moves about 1.6 inches farther out into space. Currently, the lunar rate of rotation, as well as the time it takes to circle our planet, are the same. Being a bible believing Christian I also have another view about space travel. It is hard to believe that every Christian may not agree with me. Until the cost of getting to the moon is more affordable if ever, I think the money could be spent more effectively right here on earth and we could be satisfied with singing the official state song of Vermont which is Moonlight in Vermont.