Space Flight Now Launch Log

Spaceflight became an engineering possibility with the work of Robert H. Goddard’s publication in 1919 of his paper A Method of Reaching Extreme Altitudes. His application of the de Laval nozzle to liquid fuel rockets improved efficiency enough for interplanetary travel to become possible. He also proved in the laboratory that rockets would work in the vacuum of space;[specify] nonetheless, his work was not taken seriously by the public. His attempt to secure an Army contract for a rocket-propelled weapon in the first World War was defeated by the November 11, 1918 armistice with Germany.
Working with private financial support, he was the first to launch a liquid-fueled rocket in 1926.
Goddard’s paper was highly influential on Hermann Oberth, who in turn influenced Wernher von Braun. Von Braun became the first to produce modern rockets as guided weapons, employed by Adolf Hitler. Von Braun’s V-2 was the first rocket to reach space, at an altitude of 189 kilometers (102 nautical miles) on a June 1944 test flight.



The GRAIL mission was managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, for NASA's Science Mission Directorate in Washington. The mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama. Remember In addition, the newly collected data derived from the GRAIL mission helps astronomers redefine the late heavy bombardment--a proposed episode that occurred about 4 billion years ago, during which a heavy shower of projectiles pelted the bodies of the inner Solar System, including Earth and its beloved Moon, creating heavy lunar cratering in the process. The concept of the late heavy bombardment is primarily based on the ages of massive near-side craters that are either within, or adjacent to, dark, lava-flooded basins (lunar maria), that are named Oceanus Procellarum and Mare Imbrium. However, the composition of the material existing on and below the surface of the lunar near-side indicates that the temperatures beneath this area are not representative of Earth's Moon as a whole at the time of the late heavy bombardment. The difference in the temperature profiles may have caused scientists to overestimate the amount of crater-excavating projectiles that characterized the late heavy bombardment. New studies by GRAIL scientists indicate that the size distribution of impact craters on the lunar far-side is a more accurate reflection of the crater-forming history of the inner Solar System than those pock-marking the near-side.