Solar System Wall Art

The Solar System formed 4. 6┬ábillion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system’s mass is in the Sun, with the majority of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, called volatiles, such as water, ammonia and methane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.



Solving A Lunar Mystery Almost As Old As The Moon Itself! The rectangular pattern, with its straight sides and angular corners, weakens the theory that Procellarum is an old impact basin. This is because such a mighty impact would form a circular basin. Instead, the recent study indicates that processes occurring deep beneath the lunar surface dominated the formation of this unique region. A Moon Made Of Lightweight Fluff! Methone is small and oval--and unlike other tiny objects, composed of rock and ice, that scurry around our Solar System. Methone, which was observed up close for the very first time in 2012, is not pockmarked by impacts like other worldlets of its kind. Instead, this strange little moon, is very smooth--it shows not a hill nor an impact crater anywhere on its weirdly smooth surface. This shiny, white, icy egg in Space, residing in a peaceful nest of ice crystals, is an enigma wrapped in a bewildering mystery that some astronomers may have solved. The answer to the bewitching riddle of Methone? It is composed of lightweight fluff! GRAIL has also generated new maps showing lunar crustal thickness. These maps have managed to uncover still more large impact basins on the near-side hemisphere of Earth's Moon--revealing that there are fewer such basins on the far-side, which is the side that is always turned away from Earth. This observation begs the question: How could this be if both hemispheres were on the receiving end of the same number of crashing, impacting, crater-excavating projectiles? According to GRAIL data, the answer to this riddle is that most of the volcanic eruptions on Earth's Moon occurred on its near-side hemisphere.