Solar System Simulator Online

The Solar System formed 4. 6┬ábillion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system’s mass is in the Sun, with the majority of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, called volatiles, such as water, ammonia and methane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.

As time passed, the region would have cooled down considerably and contracted--thus pulling away from its surroundings and forming fractures akin to the cracks that form in mud as it becomes dry--but on a considerably larger scale. "This is the closest we've come, so far, to identifying a place with some of the ingredients needed for a habitable environment. These results demonstrate the interconnected nature of NASA's science missions that are getting us closer to answering whether we are indeed alone or not," commented Dr. Thomas Zurbuchen in an April 13, 2017 NASA Press Release. Dr. Zurbuchen is associate administrator for NASA's Science Mission Directorate at Headquarters in Washington D.C. The precise chemical composition of these very alien lakes and seas remained unknown until 2014, when Cassini's radar instrument detected Ligeia Mare, now known to be Titan's second-largest hydrocarbon-filled lake. Ligeia Mare is brimming with an abundance of sloshing methane, and this enormous liquid reservoir is approximately the same size as two of Earth's Great Lakes combined--Lake Michigan and Lake Huron. Many planetary scientists think that the seabed of Ligeia Mare may be blanketed with a thick layer of sludge that is composed of organic-rich compounds.