Solar System Puzzles Printable

The Solar System formed 4. 6┬ábillion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system’s mass is in the Sun, with the majority of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, called volatiles, such as water, ammonia and methane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.

Despite this oddball moon's many exotic attributes, it actually sports one of the most Earth-like surfaces in our Solar System. Titan may also experience volcanic activity, but its volcanoes would erupt with different ingredients than the molten-rock lava that shoots out from the volcanoes of Earth. In dramatic contrast to what occurs on our own planet, Titan's volcanoes erupt icy water "lava" (cryovolcanism). Titan's entire alien surface has been sculpted by gushing methane and ethane, which carves river channels, and fills its enormous great lakes with liquid natural gas. There are over 100 moons dancing around the eight major planets of our Sun's family. Most of them are small, frozen, icy objects, harboring only a relatively scanty amount of rocky material, that circle around the quartet of giant gaseous planets that dwell in the outer, frigid realm of our Solar System--far from the comforting warmth and brilliance of our Star. The quartet of majestic, giant denizens of our outer Solar System--Jupiter, Saturn, Uranus, and Neptune--are enveloped with gaseous atmospheres, and orbited by a multitude of dancing, sparkling moons and moonlets. In marked contrast, the inner region of our Solar System--where our Earth dwells--is almost bereft of moons. Of the quartet of relatively petite, rocky "terrestrial" planets--Mercury, Venus, Earth, and Mars--only Earth is circled by a large Moon. Mercury and Venus are moonless, and Mars is orbited by a duo of tiny, lumpy, potato-shaped moons, Phobos and Deimos. Phobos and Deimos are probably escaped asteroids, born in the Main Asteroid Belt between Mars and Jupiter, that were captured by the gravitational embrace of the Red Planet long ago. Using computer models, the team of scientists came up with a complex interior structure for Ganymede, composed of an ocean sandwiched between up to three layers of ice--in addition to the very important rocky seafloor. The lightest ice, of course, would be on top, and the saltiest liquid would be heavy enough to sink to the bottom. Furthermore, the results suggest the existence of a truly weird phenomenon that would cause the oceans to "snow" upwards! This bizarre "snow" might develop because, as the oceans swirl and churn, and frigid plumes wind and whirl around, ice in the uppermost ocean layer, called Ice III, may form in the seawater. When ice forms, salts precipitate out. The heavier salts would then tumble down, and the lighter ice, or "snow," would flutter upward. The "snow" would them melt again before reaching the top of the ocean--and this would possibly leave slush lurking in the middle of the moon's odd sandwich!