Solar System Orbits Ellipse

The Solar System formed 4. 6┬ábillion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system’s mass is in the Sun, with the majority of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, called volatiles, such as water, ammonia and methane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.



The original goal of Cassini-Huygens was to study Saturn and its large, misty, tortured, moon Titan. Titan, the second-largest moon in our Solar System, after Ganymede of Jupiter, is a world long-shrouded in mystery, hiding behind a thick orange veil, and slashed with hydrocarbon lakes and seas. However, there are other enticing moons known to circle the ringed planet. Saturn's mid-sized icy moons (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, and Phoebe) are enchanting worlds. Each one of these frozen little moons reveals an interesting and unique geology. So far, Saturn is known to sport 62 icy moons! However, it was little Enceladus that gave astronomers their greatest shock. Even though the existence of Enceladus has been known since it was discovered by William Herschel in 1789, its enchantingly weird character was not fully appreciated until this century. Indeed, until the Voyagers flew past it, little was known about the moon. However, Enceladus has always been considered one of the more interesting members of Saturn's abundantly moonstruck family, for a number of very good reasons. First of all, it is amazingly bright. The quantity of sunlight that an object in our Solar System reflects back is termed its albedo, and this is calculated primarily by the color of the object's ground coating. The albedo of the dazzling Enceladus is almost a mirror-like 100%. Basically, this means that the surface of the little moon is richly covered with ice crystals--and that these crystals are regularly and frequently replenished. When the Voyagers flew over Enceladus in the 1980s, they found that the object was indeed abundantly coated with glittering ice. It was also being constantly, frequently repaved. Immense basins and valleys were filled with pristine white, fresh snow. Craters were cut in half--one side of the crater remaining a visible cavity pockmarking the moon's surface, and the other side completely buried in the bright, white snow. Remarkably, Enceladus circles Saturn within its so-called E ring, which is the widest of the planet's numerous rings. Just behind the moon is a readily-observed bulge within that ring, that astronomers determined was the result of the sparkling emission emanating from icy volcanoes (cryovolcanoes) that follow Enceladus wherever it wanders around its parent planet. The cryovolanoes studding Enceladus are responsible for the frequent repaving of its surface. In 2008, Cassini confirmed that the cryovolanic stream was composed of ordinary water, laced with carbon dioxide, potassium salts, carbon monoxide, and a plethora of other organic materials. Tidal squeezing, caused by Saturn and the nearby sister moons Dione and Tethys, keep the interior of Enceladus pleasantly warm, and its water in a liquid state--thus allowing the cryovolcanoes to keep spewing out their watery eruptions. The most enticing mystery, of course, is determining exactly how much water Enceladus holds. Is there merely a lake-sized body of water, or a sea, or a global ocean? The more water there is, the more it will circulate and churn--and the more Enceladus quivers and shakes, the more likely it is that it can brew up a bit of life. There are over 100 moons dancing around the eight major planets of our Sun's family. Most of them are small, frozen, icy objects, harboring only a relatively scanty amount of rocky material, that circle around the quartet of giant gaseous planets that dwell in the outer, frigid realm of our Solar System--far from the comforting warmth and brilliance of our Star. The quartet of majestic, giant denizens of our outer Solar System--Jupiter, Saturn, Uranus, and Neptune--are enveloped with gaseous atmospheres, and orbited by a multitude of dancing, sparkling moons and moonlets. In marked contrast, the inner region of our Solar System--where our Earth dwells--is almost bereft of moons. Of the quartet of relatively petite, rocky "terrestrial" planets--Mercury, Venus, Earth, and Mars--only Earth is circled by a large Moon. Mercury and Venus are moonless, and Mars is orbited by a duo of tiny, lumpy, potato-shaped moons, Phobos and Deimos. Phobos and Deimos are probably escaped asteroids, born in the Main Asteroid Belt between Mars and Jupiter, that were captured by the gravitational embrace of the Red Planet long ago.