Solar System DataTable

The Solar System formed 4. 6 billion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system’s mass is in the Sun, with the majority of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, called volatiles, such as water, ammonia and methane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.



"Titan is a very active moon. We already know that about its geology and exotic hydrocarbon cycle. Now we can add another analogy with Earth and Mars: the active dust cycle, in which organic dust can be raised from large dune fields around Titan's equator," Dr. Sebastien Rodriguez explained in a September 24, 2018 NASA Jet Propulsion Laboratory (JPL) Press Release. Dr. Rodriguez is an astronomer at the Universite Paris Diderot, France, and the paper's lead author. The JPL is in Pasadena, California. Launched as GRAIL A and GRAIL B in September 2011, the probes were renamed Ebb and Flow by schoolchildren in Montana. The probes operated in almost circular orbit near the lunar poles at an altitude of approximately 34 miles, until their mission came to an end in December 2012. The distance between the twin probes altered a bit as they soared over areas of lesser and greater gravity that were caused by visible topological features on the Moon's surface, such as impact craters and mountains--as well as by masses that were secreted beneath the lunar surface. Titan's atmosphere is approximately 95% nitrogen. However, in a way that dramatically differs from Earth's own mostly-nitrogen atmosphere, Titan's atmosphere has very little oxygen. Indeed, the remainder of Titan's atmosphere is almost entirely composed of methane--along with small qunatities of other gases, such as ethane. At the extremely cold temperatures that are found at Saturn's great distance from the heat of our Star, Titan's methane and ethane can accumulate on its icy surface to form pools of liquid.