Saturn’s Moon Pan

Some astronomers think that the two gas-giants do not sport solid surfaces secreted beneath their immense and heavy gaseous atmospheres, although others suggest that the jumbo-size duo do, indeed, harbor relatively small cores of rocky-icy stuff. The two other large inhabitants of the outer limits of our Sun's family are Uranus and Neptune, which are both classified as ice-giants, because they harbor large icy cores secreted deep down beneath their heavy, dense gaseous atmospheres which, though very massive, are not nearly as heavy as the gaseous envelopes possessed by Jupiter and Saturn. A moon is defined as a natural satellite in orbit around another body that, in turn, is in orbit around its Star. The moon is kept in its position by both its own gravity, as well as its host's gravitational grip. Some planets have many moons, some have only a small number, and still others have none at all. Several asteroids inhabiting our Solar System are circled by very small moons, and some dwarf planets--such as Pluto--also host moons. The Solar System forms a tiny part of the Milky Way Galaxy, a vast conglomeration of stars and planets. What makes astronomy so thrilling is that despite its size, the Milky Way is not the only galaxy in the universe. There are hundreds of billions of galaxies out there, probably more. The closest galaxy to our own Milky Way is Andromeda. Now, brace yourself for the distance: it is 2.3 million light years away. One of the most exciting phenomena for astronomers is the black hole. It is an area of the universe where the concentration of mass is so massive (no pun intended) that the gravitational pull it generates sucks in everything around it. Everything includes light. Remember that the escape velocity for any object in the universe is the speed required to escape the objects gravitational pull. The escape velocity for the Earth is slightly over 11 kilometers per hour while for the Moon is 2.5 kilometers per second. Well for a black hole, the escape velocity exceeds the speed of light. That is how strong the pull is.