Saturn Moon’s Texture



Dr. Porco believes that the icy moon, with its underground liquid sea of water, organics, as well as an energy source, may potentially host life similar to that found in analogous environments on Earth. The March 2012 images of Cassini's "tiger stripes" revealed that these cracks widen and narrow, as was suspected from pictures taken previously. The fissures also change over time more frequently than was originally thought. The two opposite sides of the fissures move laterally relative to one another. This is analogous to the way two banks of the San Andreas Fault can move forward and back, as well as in opposite directions. The greatest slipping and sliding happens when Enceladus is closest to Saturn--as scientists expected. There are over 100 moons dancing around the eight major planets of our Sun's family. Most of them are small, frozen, icy objects, harboring only a relatively scanty amount of rocky material, that circle around the quartet of giant gaseous planets that dwell in the outer, frigid realm of our Solar System--far from the comforting warmth and brilliance of our Star. The quartet of majestic, giant denizens of our outer Solar System--Jupiter, Saturn, Uranus, and Neptune--are enveloped with gaseous atmospheres, and orbited by a multitude of dancing, sparkling moons and moonlets. In marked contrast, the inner region of our Solar System--where our Earth dwells--is almost bereft of moons. Of the quartet of relatively petite, rocky "terrestrial" planets--Mercury, Venus, Earth, and Mars--only Earth is circled by a large Moon. Mercury and Venus are moonless, and Mars is orbited by a duo of tiny, lumpy, potato-shaped moons, Phobos and Deimos. Phobos and Deimos are probably escaped asteroids, born in the Main Asteroid Belt between Mars and Jupiter, that were captured by the gravitational embrace of the Red Planet long ago. The scientists also ruled out the possibility that the mysterious features actually exist on Titan's surface in the form of frozen methane rain or icy lava erupted from cryovolcanoes. Such surface features would show a different chemical signature and would be visible for much longer periods of time than the bright features observed in this study. The bright features were visible from time spans of only 11 hours to five weeks.