Ring Nebula Through Telescope

This nebula was discovered by the French astronomer Charles Messier while searching for comets in late January 1779. Messier’s report of his independent discovery of Comet Bode reached fellow French astronomer Antoine Darquier de Pellepoix two weeks later, who then independently rediscovered the nebula while following the comet. Darquier later reported that it was “. . . as large as Jupiter and resembles a planet which is fading” (which may have contributed to the use of the “planetary nebula” terminology). It would be entered into Messier’s catalogue as the 57th object. Messier and German-born astronomer William Herschel speculated that the nebula was formed by multiple faint stars that were unresolvable with his telescope.



This important measurement was made using Cassini's INMS instrument, which detects gases with the goal of determining their composition. INMS was designed to sample the upper atmosphere of Saturn's large, smoggy moon Titan. However, after Cassini's surprising discovery of a tall plume if icy spray erupting from cracks on Enceladus in 2005, planetary scientists turned its detectors to that small moon. Simply put, resistance to the creation of a space frontier originates with the insecurities of Western leaders. First, it is clear that everything changes with the emergence of a frontier. Established power structures are usually shaken, not reinforced. (If this is not clear, try reading Walter Prescott Webb's The Great Frontier, particularly the last chapter, and Divided We Stand: The Crisis of a Frontierless Democracy, by the same author.) Titan's atmosphere is approximately 95% nitrogen. However, in a way that dramatically differs from Earth's own mostly-nitrogen atmosphere, Titan's atmosphere has very little oxygen. Indeed, the remainder of Titan's atmosphere is almost entirely composed of methane--along with small qunatities of other gases, such as ethane. At the extremely cold temperatures that are found at Saturn's great distance from the heat of our Star, Titan's methane and ethane can accumulate on its icy surface to form pools of liquid.