Planet X Hitting Earth

Clyde Tombaugh’s discovery of Pluto in 1930 appeared to validate Lowell’s hypothesis, and Pluto was officially named the ninth planet. In 1978, Pluto was conclusively determined to be too small for its gravity to affect the giant planets, resulting in a brief search for a tenth planet. The search was largely abandoned in the early 1990s, when a study of measurements made by the Voyager 2 spacecraft found that the irregularities observed in Uranus’s orbit were due to a slight overestimation of Neptune’s mass. After 1992, the discovery of numerous small icy objects with similar or even wider orbits than Pluto led to a debate over whether Pluto should remain a planet, or whether it and its neighbours should, like the asteroids, be given their own separate classification. Although a number of the larger members of this group were initially described as planets, in 2006 the International Astronomical Union (IAU) reclassified Pluto and its largest neighbours as dwarf planets, leaving Neptune the farthest known planet in the Solar System.



This gigantic "King of Planets" is considered by some astronomers to be a "failed star". It is about as large as a gas giant planet can be, and still be a planet. It is composed of approximately 90% hydrogen and 10% helium, with small amounts of water, methane, ammonia, and rocky grains mixed into the brew. If any more material were added on to this immense planet, gravity would hug it tightly--while its entire radius would barely increase. A baby star can grow to be much larger than Jupiter. However, a true star harbors its own sparkling internal source of heat--and Jupiter would have to grow at least 80 times more massive for its furnace to catch fire. The astronomers observed this effect in the upper layer of the lunar crust, termed the megaregolith. This layer is heavily pockmarked by relatively small craters, measuring only 30 kilometers or less in diameter. In contrast, the deeper layers of lunar crust, that are scarred by larger craters, appear not to have been as badly battered, and are, therefore, less porous and fractured. Enceladus: Enceladus has shown geysers of water that were confirmed by the Cassini spacecraft in 2005. Gravimetric data obtained from 2010 to 2011 confirmed the existence of a subsurface ocean. Even though originally it was thought to be localized, most likely in a region of the icy moon's southern hemisphere, evidence collected in 2015 indicates the subsurface ocean is actually global. Furthermore, in additon to water, these geysers from vents located near the south pole of Enceladus contain tiny quantities of salt, nitrogen, carbon dioxide, and volatile hydrocarbons. Tidal flux from Saturn is apparently responsible for the melting of the ocean water, as well as the geysers.