Orion Spacecraft Heat Shield

The Orion crew module (CM) is a reusable transportation capsule that provides a habitat for the crew, provides storage for consumables and research instruments, and contains the docking port for crew transfers. The crew module is the only part of the Orion that returns to Earth after each mission and is a 57. 5° truncated cone shape with a blunt spherical aft end, 5. 02 meters (16 ft 6 in) in diameter and 3. 3 meters (10 ft 10 in) in length, with a mass of about 8. 5 metric tons (19,000 lb). It was manufactured by the Lockheed Martin Corporation. It will have 50% more volume than the Apollo capsule and will carry four to six astronauts. After extensive study, NASA has selected the Avcoat ablator system for the Orion crew module. Avcoat, which is composed of silica fibers with a resin in a honeycomb made of fiberglass and phenolic resin, was formerly used on the Apollo missions and on the Space Shuttle orbiter for early flights.

The Solar System forms a tiny part of the Milky Way Galaxy, a vast conglomeration of stars and planets. What makes astronomy so thrilling is that despite its size, the Milky Way is not the only galaxy in the universe. There are hundreds of billions of galaxies out there, probably more. The closest galaxy to our own Milky Way is Andromeda. Now, brace yourself for the distance: it is 2.3 million light years away. One of the most exciting phenomena for astronomers is the black hole. It is an area of the universe where the concentration of mass is so massive (no pun intended) that the gravitational pull it generates sucks in everything around it. Everything includes light. Remember that the escape velocity for any object in the universe is the speed required to escape the objects gravitational pull. The escape velocity for the Earth is slightly over 11 kilometers per hour while for the Moon is 2.5 kilometers per second. Well for a black hole, the escape velocity exceeds the speed of light. That is how strong the pull is. The very productive Cassini mission might attain some indirect information by analyzing the ring arc material--however, it is unlikely to come close to the little moon again before the mission ends in 2017. The scientists also considered other possible sources of hydrogen from the little moon itself, such as a preexisting reservoir in the icy crustal shell or a global ocean. Subsequent analysis indicated that it was unlikely that the observed hydrogen was obtained during the formation of Enceladus or from other processes on the moon-world's surface or in the interior.