New Moon Pictures NASA

The moment of mean conjunction can easily be computed from an expression for the mean ecliptical longitude of the Moon minus the mean ecliptical longitude of the Sun (Delauney parameter D). Jean Meeus gave formulae to compute this in his Astronomical Formulae for Calculators based on the ephemerides of Brown and Newcomb (ca. 1900); and in his 1st edition of Astronomical Algorithms based on the ELP2000-85 (the 2nd edition uses ELP2000-82 with improved expressions from Chapront et al. in 1998). These are now outdated: Chapront et al. (2002) published improved parameters. Also Meeus’s formula uses a fractional variable to allow computation of the four main phases, and uses a second variable for the secular terms. For the convenience of the reader, the formula given above is based on Chapront’s latest parameters and expressed with a single integer variable, and the following additional terms have been added:



However, Dr. Thomas explained to the press in May 2013 that the ring arcs are much more tenuous than the fully formed rings of Saturn. As a matter of fact, the ring arcs are so delicate and thin that it would take about ten billion years for just 1 meter of blowing icy snow to collect within the craters of Methone. The astronomers then conducted an analysis called a Bouger correction in order to subtract the gravitational effect of topological features, such as valleys and mountains, from the total gravity field. What is then left is the gravity field hidden beneath the lunar surface, existing within its crust. Dr. Jason Soderblom said in a September 10, 2015 Massachusetts Institute of Technology (MIT) Press Release that the evolution of lunar porosity can provide scientists with valuable clues to some of the most ancient life-supporting processes occurring in our Solar System. Dr. Soderblom is a planetary research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences in Cambridge, Massachusetts.