Neil Armstrong Loses Finger

A graduate of Purdue University, Armstrong studied aeronautical engineering; his college tuition was paid for by the U. S. Navy under the Holloway Plan. He became a midshipman in 1949 and a naval aviator the following year. He saw action in the Korean War, flying the Grumman F9F Panther from the aircraft carrier USS Essex. In September 1951, while making a low bombing run, Armstrong’s aircraft was damaged when it collided with an anti-aircraft cable which cut off a large portion of one wing. Armstrong was forced to bail out. After the war, he completed his bachelor’s degree at Purdue and became a test pilot at the National Advisory Committee for Aeronautics (NACA) High-Speed Flight Station at Edwards Air Force Base in California. He was the project pilot on Century Series fighters and flew the North American X-15 seven times. He was also a participant in the U. S. Air Force’s Man in Space Soonest and X-20 Dyna-Soar human spaceflight programs.



The "Dagwood Sandwich" Moon. Earlier models of Ganymede's oceans were based on the assumption that the existence of salt didn't change the nature of liquid very much with pressure. However, Dr. Vance and his colleagues found, through laboratory experiments, that salt does increase the density of liquids under the extreme conditions hidden deep within Ganymede and similar icy moons with subsurface bodies of water. Imagine adding table salt to a glass of water. Instead of increasing in volume, the liquid will actually shrink and become denser. The reason for this is that salt ions lure water molecules. Only once since I began a twenty year fascination with Einstein's time/light theory have I heard from anyone connected to NASA who dared to address this fact to a sublimely ignorant public. He was hushed up in the slow lane with indifference and a public that couldn't tell you how the world can make it through the next decade without imploding. With a list of almost infinite problems how can we think of getting people out that far, much less plan for the return of our astronauts after 4000 generations of time. Therefore, the results of the new study support the idea that primitive life could potentially have evolved on Ganymede. This is because places where water and rock interact are important for the development of life. For example, some theories suggest that life arose on our planet within hot, bubbling seafloor vents. Before the new study, Ganymede's rocky seafloor was believed to be coated with ice--not liquid. This would have presented a problem for the evolution of living tidbits. The "Dagwood sandwich" findings, however, indicate something else entirely--the first layer on top of Ganymede's rocky core might be made up of precious, life-sustaining salty water.