Neil Armstrong Costume

A graduate of Purdue University, Armstrong studied aeronautical engineering; his college tuition was paid for by the U. S. Navy under the Holloway Plan. He became a midshipman in 1949 and a naval aviator the following year. He saw action in the Korean War, flying the Grumman F9F Panther from the aircraft carrier USS Essex. In September 1951, while making a low bombing run, Armstrong’s aircraft was damaged when it collided with an anti-aircraft cable which cut off a large portion of one wing. Armstrong was forced to bail out. After the war, he completed his bachelor’s degree at Purdue and became a test pilot at the National Advisory Committee for Aeronautics (NACA) High-Speed Flight Station at Edwards Air Force Base in California. He was the project pilot on Century Series fighters and flew the North American X-15 seven times. He was also a participant in the U. S. Air Force’s Man in Space Soonest and X-20 Dyna-Soar human spaceflight programs.



Enshrouded in a dense golden hydrocarbon mist, Saturn's largest moon Titan is a mysterious mesmerizing world in its own right. For centuries, Titan's veiled, frigid surface was completely camouflaged by this hazy golden-orange cloud-cover that hid its icy surface from the prying eyes of curious observers on Earth. However, this misty moisty moon-world was finally forced to show its mysterious face, long-hidden behind its obscuring veil of fog, when the Cassini Spacecraft's Huygens Probe landed on its surface in 2004, sending revealing pictures back to astronomers on Earth. In September 2018, astronomers announced that new data obtained from Cassini show what appear to be gigantic, roaring dust storms, raging through the equatorial regions of Titan. The discovery, announced in the September 24, 2018 issue of the journal Nature Geoscience, makes this oddball moon-world the third known object in our Solar System--in addition to Earth and Mars--where ferocious dust storms have been observed. The observations are now shedding new light on the fascinating and dynamic environment of Titan, which is the second largest moon in our Solar System, after Ganymede of Jupiter. So here you have two definitions of a blue moon but the one for a calendar blue moon does not describe the true meaning of a blue moon. Here's why: However, it was little Enceladus that gave astronomers their greatest shock. Even though the existence of Enceladus has been known since it was discovered by William Herschel in 1789, its enchantingly weird character was not fully appreciated until this century. Indeed, until the Voyagers flew past it, little was known about the moon. However, Enceladus has always been considered one of the more interesting members of Saturn's abundantly moonstruck family, for a number of very good reasons. First of all, it is amazingly bright. The quantity of sunlight that an object in our Solar System reflects back is termed its albedo, and this is calculated primarily by the color of the object's ground coating. The albedo of the dazzling Enceladus is almost a mirror-like 100%. Basically, this means that the surface of the little moon is richly covered with ice crystals--and that these crystals are regularly and frequently replenished. When the Voyagers flew over Enceladus in the 1980s, they found that the object was indeed abundantly coated with glittering ice. It was also being constantly, frequently repaved. Immense basins and valleys were filled with pristine white, fresh snow. Craters were cut in half--one side of the crater remaining a visible cavity pockmarking the moon's surface, and the other side completely buried in the bright, white snow. Remarkably, Enceladus circles Saturn within its so-called E ring, which is the widest of the planet's numerous rings. Just behind the moon is a readily-observed bulge within that ring, that astronomers determined was the result of the sparkling emission emanating from icy volcanoes (cryovolcanoes) that follow Enceladus wherever it wanders around its parent planet. The cryovolanoes studding Enceladus are responsible for the frequent repaving of its surface. In 2008, Cassini confirmed that the cryovolanic stream was composed of ordinary water, laced with carbon dioxide, potassium salts, carbon monoxide, and a plethora of other organic materials. Tidal squeezing, caused by Saturn and the nearby sister moons Dione and Tethys, keep the interior of Enceladus pleasantly warm, and its water in a liquid state--thus allowing the cryovolcanoes to keep spewing out their watery eruptions. The most enticing mystery, of course, is determining exactly how much water Enceladus holds. Is there merely a lake-sized body of water, or a sea, or a global ocean? The more water there is, the more it will circulate and churn--and the more Enceladus quivers and shakes, the more likely it is that it can brew up a bit of life.