Neil Armstrong Buzz Le

A graduate of Purdue University, Armstrong studied aeronautical engineering; his college tuition was paid for by the U. S. Navy under the Holloway Plan. He became a midshipman in 1949 and a naval aviator the following year. He saw action in the Korean War, flying the Grumman F9F Panther from the aircraft carrier USS Essex. In September 1951, while making a low bombing run, Armstrong’s aircraft was damaged when it collided with an anti-aircraft cable which cut off a large portion of one wing. Armstrong was forced to bail out. After the war, he completed his bachelor’s degree at Purdue and became a test pilot at the National Advisory Committee for Aeronautics (NACA) High-Speed Flight Station at Edwards Air Force Base in California. He was the project pilot on Century Series fighters and flew the North American X-15 seven times. He was also a participant in the U. S. Air Force’s Man in Space Soonest and X-20 Dyna-Soar human spaceflight programs.



The existence of such powerful roaring winds kicking up violent and powerful dust storms suggests that the underlying sand can be set in motion, too, and that the giant dunes covering Titan's equatorial regions are still active and continually changing. We live in a Cosmic "shooting gallery". Objects inhabiting our Solar System have been profusely and mercilessly blasted by showering asteroids and comets for billions and billions of years. However, planets and large moons have their way of smoothing away the scars--their strong gravity pulls them into a nice ball-like spherical shape. Furthermore, some of these larger spheres possess sufficient internal heat to cause flows of fiery lava and other volcanic features that can fill in the scars of impact craters. A few such large bodies are blasted by strong winds and pouring rains, which also erode away the pockmarks left on their surfaces by showering impactors. This gigantic "King of Planets" is considered by some astronomers to be a "failed star". It is about as large as a gas giant planet can be, and still be a planet. It is composed of approximately 90% hydrogen and 10% helium, with small amounts of water, methane, ammonia, and rocky grains mixed into the brew. If any more material were added on to this immense planet, gravity would hug it tightly--while its entire radius would barely increase. A baby star can grow to be much larger than Jupiter. However, a true star harbors its own sparkling internal source of heat--and Jupiter would have to grow at least 80 times more massive for its furnace to catch fire.