Neil Armstrong Born

A graduate of Purdue University, Armstrong studied aeronautical engineering; his college tuition was paid for by the U. S. Navy under the Holloway Plan. He became a midshipman in 1949 and a naval aviator the following year. He saw action in the Korean War, flying the Grumman F9F Panther from the aircraft carrier USS Essex. In September 1951, while making a low bombing run, Armstrong’s aircraft was damaged when it collided with an anti-aircraft cable which cut off a large portion of one wing. Armstrong was forced to bail out. After the war, he completed his bachelor’s degree at Purdue and became a test pilot at the National Advisory Committee for Aeronautics (NACA) High-Speed Flight Station at Edwards Air Force Base in California. He was the project pilot on Century Series fighters and flew the North American X-15 seven times. He was also a participant in the U. S. Air Force’s Man in Space Soonest and X-20 Dyna-Soar human spaceflight programs.



The team's findings can also be applied to exoplanets, which are planets that circle stars beyond our own Sun. Some super-Earth exoplanets, which are rocky planets more massive than our own, have been proposed as "water worlds" covered with churning oceans. Could they have life? Perhaps. The potential would certainly be there. Dr. Vance and his team believe laboratory experiments and more sophisticated modeling of exotic oceans might help to find answers to these very profound questions. We live in a Cosmic "shooting gallery". Objects inhabiting our Solar System have been profusely and mercilessly blasted by showering asteroids and comets for billions and billions of years. However, planets and large moons have their way of smoothing away the scars--their strong gravity pulls them into a nice ball-like spherical shape. Furthermore, some of these larger spheres possess sufficient internal heat to cause flows of fiery lava and other volcanic features that can fill in the scars of impact craters. A few such large bodies are blasted by strong winds and pouring rains, which also erode away the pockmarks left on their surfaces by showering impactors. Jupiter is circled by a bewitching duo of moons that are potentially capable of nurturing delicate tidbits of life as we know it. Like its more famous sister-moon, Europa, Ganymede might harbor a life-loving subsurface ocean of liquid water in contact with a rocky seafloor. This special arrangement would make possible a bubbling cauldron of fascinating chemical reactions--and these reactions could potentially include the same kind that allowed life to evolve on our own planet!