NASA Travel Brochure Sample



There is a bizarre rocky landscape, well hidden from our prying eyes, in the secretive shadows under the oceans of our Earth. Here, in this strange and alien domain, it is always as dark as midnight. Thin, tall towers of craggy rock emit billows of black smoke from their peaks, while all around the towers stand a weird, wavy multitude of red-and-white, tube-like organisms--that have no eyes, no intestines, and no mouth. These 3-foot-long tubeworms derive their energy from Earth itself, and not from the light of our nearby Sun--a feat that most biologists did not believe possible until these wormish creatures were discovered back in 2001. The extremely hot, superheated black water, billowing out from the hydrothermal vents erupting on Earth's seafloor, provides high-energy chemicals that sustain the tubeworms, as well as other weird organisms that apparently thrive in this very improbable habitat. Imagine, a frigid, distant shadow-region in the far suburbs of our Solar System, where a myriad of twirling icy objects--some large, some small--orbit our Sun in a mysterious, mesmerizing phantom-like ballet within this eerie and strange swath of darkness. Here, where our Sun is so far away that it hangs suspended in an alien sky of perpetual twilight, looking just like a particularly large star traveling through a sea of smaller stars, is the Kuiper Belt--a mysterious, distant deep-freeze that astronomers are only now first beginning to explore. Makemake is a denizen of this remote region, a dwarf planet that is one of the largest known objects inhabiting the Kuiper Belt, sporting a diameter that is about two-thirds the size of Pluto. In April 2016, a team of astronomers announced that, while peering into the outer limits of our Solar System, NASA's Hubble Space Telescope (HST) discovered a tiny, dark moon orbiting Makemake, which is the second brightest icy dwarf planet--after Pluto--in the Kuiper Belt. Solving A Lunar Mystery Almost As Old As The Moon Itself! The rectangular pattern, with its straight sides and angular corners, weakens the theory that Procellarum is an old impact basin. This is because such a mighty impact would form a circular basin. Instead, the recent study indicates that processes occurring deep beneath the lunar surface dominated the formation of this unique region.