The astronomers then conducted an analysis called a Bouger correction in order to subtract the gravitational effect of topological features, such as valleys and mountains, from the total gravity field. What is then left is the gravity field hidden beneath the lunar surface, existing within its crust. Unfortunately, the various economic troubles which are plaguing Europe has caused ESA to spend less money than before, so many space programs in Europe has halted. However, both in China as well as in India, there are several ambitious programs present, which may cause any one of these nations to send another man to the moon in the next decade. Naturally, only time will tell; but nothing will change the fact that mankind's future is in the stars. In addition, the newly collected data derived from the GRAIL mission helps astronomers redefine the late heavy bombardment--a proposed episode that occurred about 4 billion years ago, during which a heavy shower of projectiles pelted the bodies of the inner Solar System, including Earth and its beloved Moon, creating heavy lunar cratering in the process. The concept of the late heavy bombardment is primarily based on the ages of massive near-side craters that are either within, or adjacent to, dark, lava-flooded basins (lunar maria), that are named Oceanus Procellarum and Mare Imbrium. However, the composition of the material existing on and below the surface of the lunar near-side indicates that the temperatures beneath this area are not representative of Earth's Moon as a whole at the time of the late heavy bombardment. The difference in the temperature profiles may have caused scientists to overestimate the amount of crater-excavating projectiles that characterized the late heavy bombardment. New studies by GRAIL scientists indicate that the size distribution of impact craters on the lunar far-side is a more accurate reflection of the crater-forming history of the inner Solar System than those pock-marking the near-side.