NASA G-Force



Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. Titan has three large seas. However, the seas of Titan are not filled with water, but are filled instead with swirling liquid hydrocarbons. All three of Titan's exotic seas are close to its north pole, and they are surrounded by many smaller hydrocarbon-filled lakes in the northern hemisphere. Comets are actually bright, streaking invaders from far, far away that carry within their mysterious, frozen hearts the most pristine of primordial ingredients that contributed to the formation of our Solar System about 4.6 billion years ago. This primeval mix of frozen material has been preserved in the pristine "deep-freeze" of our Solar System's darkest, most distant domains. Comets are brilliant and breathtaking spectacles that for decades were too dismissively called "dirty snowballs" or "icy dirt balls", depending on the particular astronomer's point of view. These frozen alien objects zip into the inner Solar System, where our planet is situated, from their distant home beyond Neptune. It is generally thought that by acquiring an understanding of the ingredients that make up these ephemeral, fragile celestial objects, a scientific understanding of the mysterious ingredients that contributed to the precious recipe that cooked up our Solar System can be made.