Makemake, like Pluto, shows a red hue in the visible part of the electromagnetic spectrum. The near-infrared spectrum is marked by the existence of the broad methane absorption bands--and methane has also been observed on Pluto. Spectral analysis of Makemake's surface shows that its methane must be present in the form of large grains that are at least one centimeter in size. In addition to methane, there appears to be large quantities of ethane and tholins as well as smaller quantities of ethylene, acetylene, and high-mass alkanes (like propane)--most likely formed as a result of the photolysis of methane by solar radiation. The tholins are thought to be the source of the red color of the visible spectrum. Even though there is some evidence for the existence of nitrogen ice on Makemake's frozen surface, at least combined with other ices, it is probably not close to the same abundance of nitrogen seen on Pluto and on Triton. Triton is a large moon of the planet Neptune that sports a retrograde orbit indicating that it is a captured object. Many astronomers think that Triton is a wandering refugee from the Kuiper Belt that was captured by the gravity of its large, gaseous planet. It is possible that eventually the doomed Triton will plunge into the immense, deep blue world that it has circled for so long as an adopted member of its family. Nitrogen accounts for more than 98 percent of the crust of both Pluto and Triton. The relative lack of nitrogen ice on Makemake hints that its supply of nitrogen has somehow been depleted over the age of our Solar System. We earthlings love to look up at the moon. So much does the moon enamor us; we write movies, songs and poems by the droves that contain the name of the earth's super satellite. A case in point is the fact that one of the biggest selling record albums of all time is Pink Floyd's "Dark Side of the Moon." When Jupiter was born along with the rest of our Solar System, approximately 4.56 billion years ago, it twinkled like a star. The energy that it emitted--as a result of tumbling surrounding material--made Jupiter's interior searing-hot. In fact, the larger Jupiter grew, the hotter it became. At long last, when the material that it had drawn in from the whirling, swirling surrounding protoplanetary accretion disk--made up of nurturing dust and gas--was depleted, Jupiter may well have attained the enormous diameter of over 10 times what it has today. It also may have reached a truly toasty central temperature of about 50,000 Kelvin. During that long ago era, Jupiter twinkled, glittered, and sparkled like a little star, shining ferociously with a fire that was approximately 1% that of our much more brilliant Sun today.