The new findings are an independent line of evidence that hydrothermal activity is taking place in the subsurface ocean of Enceladus. Earlier results, published in March 2015, indicated hot water is interacting with rock beneath the sea of this distant moon. The new discoveries support that conclusion and add that the rock appears to be reacting chemically to produce the hydrogen. Dr. Jason Soderblom said in a September 10, 2015 Massachusetts Institute of Technology (MIT) Press Release that the evolution of lunar porosity can provide scientists with valuable clues to some of the most ancient life-supporting processes occurring in our Solar System. Dr. Soderblom is a planetary research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences in Cambridge, Massachusetts. As time passed, the region would have cooled down considerably and contracted--thus pulling away from its surroundings and forming fractures akin to the cracks that form in mud as it becomes dry--but on a considerably larger scale.