Mountain Lake 1920X1080 Planets

Dr. Carolyn Porco, a planetary scientist and leader of the Imaging Science team for Cassini, explained to the press in March 2012 that "More than 90 jets of all sizes near Enceladus's south pole are spraying water vapor, icy particles, and organic compounds all over the place. Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth's oceans." "We developed new operations methods for INMS for Cassini's final flight through Enceladus' plume. We conducted extensive simulations, data analyses, and laboratory tests to identify background sources of hydrogen, allowing us to quantify just how much molecular hydrogen was truly originating from Enceladus itself," explained Dr. Rebecca Perryman in the April 13, 2017 SwRI Press Release. Dr. Perryman is INMS operations technical lead. In addition, the newly collected data derived from the GRAIL mission helps astronomers redefine the late heavy bombardment--a proposed episode that occurred about 4 billion years ago, during which a heavy shower of projectiles pelted the bodies of the inner Solar System, including Earth and its beloved Moon, creating heavy lunar cratering in the process. The concept of the late heavy bombardment is primarily based on the ages of massive near-side craters that are either within, or adjacent to, dark, lava-flooded basins (lunar maria), that are named Oceanus Procellarum and Mare Imbrium. However, the composition of the material existing on and below the surface of the lunar near-side indicates that the temperatures beneath this area are not representative of Earth's Moon as a whole at the time of the late heavy bombardment. The difference in the temperature profiles may have caused scientists to overestimate the amount of crater-excavating projectiles that characterized the late heavy bombardment. New studies by GRAIL scientists indicate that the size distribution of impact craters on the lunar far-side is a more accurate reflection of the crater-forming history of the inner Solar System than those pock-marking the near-side.