Mars Rover Spirit Landing

There have been four successful robotically operated Mars rovers, all managed by the Jet Propulsion Laboratory: Sojourner, Opportunity, Spirit and Curiosity. On January 24, 2016, NASA reported that current studies on Mars by Curiosity and Opportunity (the latter now defunct) would be searching for evidence of ancient life, including a biosphere based on autotrophic, chemotrophic or chemolithoautotrophic microorganisms, as well as ancient water, including fluvio-lacustrine environments (plains related to ancient rivers or lakes) that may have been habitable. The search for evidence of habitability, taphonomy (related to fossils), and organic carbon on Mars is now a primary NASA objective. In June 2018, Opportunity went out of contact after going into hibernation mode in a dust storm. NASA declared the end of the Opportunity mission on February 13, 2019, after numerous failures to wake up the rover.



At last, on July 1, 2004, the Cassini spacecraft fired off its breaking rocket, glided into orbit around Saturn, and started taking pictures that left scientists in awe. It wasn't as if they hadn't been prepared for such wonders. The weeks leading up to Cassini's arrival at Saturn had served to intensify their already heated anticipation. It seemed as if each approach-picture taken was more enticing than the one preceding it. The discovery of a moon for Makemake may have solved one perplexing puzzle concerning this distant, icy object. Earlier infrared studies of the dwarf planet showed that while Makemake's surface is almost entirely frozen and bright, some areas seem to be warmer than other areas. Astronomers had suggested that this discrepancy may be the result of our Sun warming certain dark patches on Makemake's surface. However, unless Makemake is in a special orientation, these mysterious dark patches should cause the ice dwarf's brightness to vary substantially as it rotates. But this amount of variability has not been observed. Europa: Planetary scientists generally think that a layer of liquid water swirls around beneath Europa's surface, and that heat from tidal flexing causes the subsurface ocean to remain liquid. It is estimated that the outer crust of solid ice is about 6 to 19 miles thick, including a ductile "warm ice" layer that hints that the liquid ocean underneath may be 60 miles deep. This means that Europa's oceans would amount to slightly more than two times the volume of Earth's oceans.