Mars Curiosity Rover Latest Update

Curiosity is a car-sized rover designed to explore the crater Gale on Mars as part of NASA’s Mars Science Laboratory mission (MSL). Curiosity was launched from Cape Canaveral on November 26, 2011, at 15:02 UTC and landed on Aeolis Palus inside Gale on Mars on August 6, 2012, 05:17 UTC. The Bradbury Landing site was less than 2. 4 km (1. 5 mi) from the center of the rover’s touchdown target after a 560 million km (350 million mi) journey. The rover’s goals include an investigation of the Martian climate and geology; assessment of whether the selected field site inside Gale has ever offered environmental conditions favorable for microbial life, including investigation of the role of water; and planetary habitability studies in preparation for human exploration.



Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. "For the smaller craters, it's like if you're filling a bucket, eventually your bucket gets full, but if you keep pouring cups of water into the bucket, you can't tell how many cups of water beyond full you've gone. Looking at the larger craters at the subsurface might give us insight, because that 'bucket' isn't full yet," Dr. Soderblom added. Jupiter is circled by a bewitching duo of moons that are potentially capable of nurturing delicate tidbits of life as we know it. Like its more famous sister-moon, Europa, Ganymede might harbor a life-loving subsurface ocean of liquid water in contact with a rocky seafloor. This special arrangement would make possible a bubbling cauldron of fascinating chemical reactions--and these reactions could potentially include the same kind that allowed life to evolve on our own planet!