Mariner 10 Spacecraft

The components on Mariner 10 can be categorized into four groups based on their common function. The solar panels, power subsystem, attitude control subsystem, and computer kept the spacecraft operating properly during the flight. The navigational system, including the hydrazine rocket, would keep Mariner 10 on track to Venus and Mercury. Several scientific instruments would collect data at the two planets. Finally, the antennas would transmit this data to the Deep Space Network back on Earth, as well as receive commands from Mission Control. Mariner 10’s various components and scientific instruments were attached to a central hub, which was roughly the shape of an octagonal prism. The hub stored the spacecraft’s internal electronics. The Mariner 10 spacecraft was manufactured by Boeing. NASA set a strict limit of $98 million for Mariner 10’s total cost, which marked the first time the agency subjected a mission to an inflexible budget constraint. No overruns would be tolerated, so mission planners carefully considered cost efficiency when designing the spacecraft’s instruments. Cost control was primarily accomplished by executing contract work closer to the launch date than was recommended by normal mission schedules, as reducing the length of available work time increased cost efficiency. Despite the rushed schedule, very few deadlines were missed. The mission ended up about $1 million under budget.



Moon Boots are convenient in that they cater for both genders and all ages. Adults, adolescents and teenagers can look warm and trendy while newborns and kids can look cosy and cute. They are extremely versatile in this regard. Dr. Porco believes that the icy moon, with its underground liquid sea of water, organics, as well as an energy source, may potentially host life similar to that found in analogous environments on Earth. The March 2012 images of Cassini's "tiger stripes" revealed that these cracks widen and narrow, as was suspected from pictures taken previously. The fissures also change over time more frequently than was originally thought. The two opposite sides of the fissures move laterally relative to one another. This is analogous to the way two banks of the San Andreas Fault can move forward and back, as well as in opposite directions. The greatest slipping and sliding happens when Enceladus is closest to Saturn--as scientists expected. HST's detection of a site, which appears to show persistent, intermittent plume activity on Europa, provides a promising target for the Europa mission to investigate. Equipped with its new and sophisticated suite of science instruments, the mission can detect whatever may potentially be swimming around in the hidden global ocean sloshing around beneath its secretive crust of ice.