Map of the Planets Solar System Dwarf Panet’s



But small moons like Methone are usually geologically inactive and bereft of an atmosphere. Therefore, they are usually unable to smooth away the scars. Dr. Peter Thomas of Cornell University in Ithaca, New York, explained it this way in the May 17, 2013 New Scientist: "When we look at objects less than 200 kilometers in radius, they are all like potatoes. They have lumps, grooves, craters." This makes Methone's smooth surface a mystery. Dr. Thomas is a Cassini team member. The three little moons (Methone, Pallene, and Anthe) orbit at very similar distances from Saturn, and they have a dynamical relationship. Mimas disturbs the trio of little moons, and causes the orbit of Methone to vary by as much as 20 kilometers (12.4 miles). Mimas causes the orbit of Pallene to vary by a slightly smaller amount--but it has the greatest influence on the orbit of the moon Anthe. Using computer models, the team of scientists came up with a complex interior structure for Ganymede, composed of an ocean sandwiched between up to three layers of ice--in addition to the very important rocky seafloor. The lightest ice, of course, would be on top, and the saltiest liquid would be heavy enough to sink to the bottom. Furthermore, the results suggest the existence of a truly weird phenomenon that would cause the oceans to "snow" upwards! This bizarre "snow" might develop because, as the oceans swirl and churn, and frigid plumes wind and whirl around, ice in the uppermost ocean layer, called Ice III, may form in the seawater. When ice forms, salts precipitate out. The heavier salts would then tumble down, and the lighter ice, or "snow," would flutter upward. The "snow" would them melt again before reaching the top of the ocean--and this would possibly leave slush lurking in the middle of the moon's odd sandwich!