Low Earth Orbit Wallpaper

There is a large variety of other sources that define LEO in terms of altitude. The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth’s spheroid figure and local topography. While definitions based on altitude are inherently ambiguous, most of them fall within the range specified by an orbit period of 128 minutes because, according to Kepler’s third law, this corresponds to a semi-major axis of 8,413 km (5,228 mi). For circular orbits, this in turn corresponds to an altitude of 2,042 km (1,269 mi) above the mean radius of Earth, which is consistent with some of the upper altitude limits in some LEO definitions.



However, Dr. Thomas explained to the press in May 2013 that the ring arcs are much more tenuous than the fully formed rings of Saturn. As a matter of fact, the ring arcs are so delicate and thin that it would take about ten billion years for just 1 meter of blowing icy snow to collect within the craters of Methone. Each of the little Space eggs resides within its own ring arc--which is a fragmentary ring of Saturn. One hypothesis states that glittering ice crystals swarming around in the ring arc might be floating down to the surface of Methone, filling in its impact craters or other rough topography. This is something that is thought to have occurred on two other small, icy moons of Saturn--Atlas and Pan. Icy stuff swarming around in Saturn's rings apparently piled up around each moonlet's equator. Many people listen to the weather report on the radio before they head out the door in the morning so they can be prepared for the day to come.