High Quality Hubble

For device displays such as phones, tablets, monitors and televisions, the use of the word resolution as defined above is a misnomer, though common. The term “display resolution” is usually used to mean pixel dimensions, the number of pixels in each dimension (e. g. 1920 × 1080), which does not tell anything about the pixel density of the display on which the image is actually formed: resolution properly refers to the pixel density, the number of pixels per unit distance or area, not total number of pixels. In digital measurement, the display resolution would be given in pixels per inch (PPI). In analog measurement, if the screen is 10 inches high, then the horizontal resolution is measured across a square 10 inches wide. For television standards, this is typically stated as “lines horizontal resolution, per picture height”; for example, analog NTSC TVs can typically display about 340 lines of “per picture height” horizontal resolution from over-the-air sources, which is equivalent to about 440 total lines of actual picture information from left edge to right edge.

Jupiter, along with its beautiful ringed sister planet, Saturn, are the gas-giant duo of our Sun's family of eight major planets. The other two giant planets--that dwell in our Solar System's outer limits--are Uranus and Neptune. Uranus and Neptune are classified as ice giants, because they carry within them larger cores than Jupiter and Saturn, as well as thinner gaseous envelopes. Jupiter and Saturn may (or may not) contain small, hidden cores, that are heavily veiled by extremely massive, dense gaseous envelopes. "We developed new operations methods for INMS for Cassini's final flight through Enceladus' plume. We conducted extensive simulations, data analyses, and laboratory tests to identify background sources of hydrogen, allowing us to quantify just how much molecular hydrogen was truly originating from Enceladus itself," explained Dr. Rebecca Perryman in the April 13, 2017 SwRI Press Release. Dr. Perryman is INMS operations technical lead. "The rectangular pattern of gravity anomalies was completely unexpected. Using the gradients in the gravity data to reveal the rectangular pattern of anomalies, we can now clearly and completely see structures that were only hinted at by surface observations," Dr. Jeffrey Andrews-Hanna explained in the October 1, 2014 NASA Press Release. Dr. Andrews-Hanna, a GRAIL co-investigator at the Colorado School of Mines in Golden, Colorado, is lead author of the paper.