Gliese 581e



Dr. Porco further believes that Enceladus's orbit could have been much more eccentric in the past. The greater the eccentricity, the greater the tidal squeezing, and the resulting structural variations produce heat. In this case, the heat would have been saved inside the icy moon, melting some of the ice to replenish the liquid water sea. Dr. Porco continued to explain that "(T)he tidal flexing occurring now is not enough to account for all the heat presently coming out of Enceladus. One way out of this dilemma is to assume that some of the heat observed today was generated and stored internally in the past... (N)ow that the orbit's eccentricity has lessened, the heat emanating from the interior is a combination of heat produced today and in the past." But there is an important difference. On our own planet, lakes and seas are flowing with water, while Titan's lakes and seas are filled primarily with methane and ethane, that slosh around within these liquid reservoirs. In this never-before-seen cycle, the hydrocarbon molecules evaporate and condense into clouds that send an exotic "rain of terror" back down to this strange moon-world's carbon-slashed surface. Cassini's successful mission of exploration to the Saturn system is over, but planetary scientists are left with a cornucopia filled with important new information that Cassini/Huygens sent back to Earth before its mission ended. A collaborative NASA/European Space Agency/Italian Space Agency mission, the robotic spacecraft was made up of two components. The first was the European Space Agency's (ESA's) Huygens Probe, that had been named in honor of the Dutch mathematician and astronomer Christiaan Huygens (1629-1695), who discovered Titan. The Huygens Probe also closely observed Saturn's lovely system of gossamer rings. The second component, the NASA-designed Cassini Orbiter, was named after the Italian-French astronomer Giovanni Dominico Cassini (1625-1712), who discovered four of Saturn's other intriguing, numerous, and icy moons.