Flair Nebula



The screaming winds could be carrying the dust raised from the dunes across great distances, contributing to the global cycle of organic dust on Titan. These would result in effects similar to those that occur on both Earth and Mars. There are over 100 moons dancing around the eight major planets of our Sun's family. Most of them are small, frozen, icy objects, harboring only a relatively scanty amount of rocky material, that circle around the quartet of giant gaseous planets that dwell in the outer, frigid realm of our Solar System--far from the comforting warmth and brilliance of our Star. The quartet of majestic, giant denizens of our outer Solar System--Jupiter, Saturn, Uranus, and Neptune--are enveloped with gaseous atmospheres, and orbited by a multitude of dancing, sparkling moons and moonlets. In marked contrast, the inner region of our Solar System--where our Earth dwells--is almost bereft of moons. Of the quartet of relatively petite, rocky "terrestrial" planets--Mercury, Venus, Earth, and Mars--only Earth is circled by a large Moon. Mercury and Venus are moonless, and Mars is orbited by a duo of tiny, lumpy, potato-shaped moons, Phobos and Deimos. Phobos and Deimos are probably escaped asteroids, born in the Main Asteroid Belt between Mars and Jupiter, that were captured by the gravitational embrace of the Red Planet long ago. Dr. Thomas and his team at Cornell University have tried to peer into the mysterious interior of the weird little Space egg that is Methone. They started out with the hypothesis that Saturn's relentless strong gravity pulls the little moon into an elongated shape, just like Earth's own large Moon raises ocean tides on our own planet. Then the team went on to calculate how dense the little moon would have to be for its own gravity to counteract those intense tidal forces and create its strange egg-shape.