Fire Hydrant Solar System

Before piped mains supplies, water for firefighting had to be kept in buckets and cauldrons ready for use by ‘bucket-brigades’ or brought with a horse-drawn fire-pump. From the 16th century, as wooden mains water systems were installed, firefighters would dig down the pipes and drill a hole for water to fill a “wet well” for the buckets or pumps. This had to be filled and plugged afterwards, hence the common US term for a hydrant, ‘fireplug’. A marker would be left to indicate where a ‘plug’ had already been drilled to enable firefighters to find ready-drilled holes. Later wooden systems had pre-drilled holes and plugs. When cast-iron pipes replaced the wood, permanent underground access points were included for the fire fighters. Some countries provide access covers to these points, while others attach fixed above-ground hydrants – the first cast iron ones patented in 1801 by Frederick Graff, then chief-engineer of the Philadelphia Water Works. Invention since then has targeted problems such as tampering, freezing, connection, reliability etc .

"From what we know about cloud formation on Titan, we can say that such methane clouds in this area and in this time of year are not physically possible. The convective methane clouds that can develop in this area and during this period of time would contain huge droplets and must be at a very high altitude--much higher than the 6 miles that modeling tells us the new features are located," Dr. Rodriguez explained in the September 24, 2018 JPL Press Release. Some of these grads are aware that even if we could travel at warp 9 (Star Trek's imaginary multiplication of the speed of light) that it would take about one hundred thousand years to make the edge of the Milky Way Galaxy and upon return, the earth would be about 1.2 million years older than it is today. But why harp on the small stuff. "For the smallest craters that we're looking at, we think we're starting to see where the Moon has gone through so much fracturing that it gets to a point where the porosity of the crust just stays at some constant level. You can keep impacting it and you'll hit regions where you'll increase porosity here and decrease it there, but on average it stays constant," Dr. Soderblom continued to explain to the press on September 10, 2015.