Earth View From Space Nasa

Dr. Porco further believes that Enceladus's orbit could have been much more eccentric in the past. The greater the eccentricity, the greater the tidal squeezing, and the resulting structural variations produce heat. In this case, the heat would have been saved inside the icy moon, melting some of the ice to replenish the liquid water sea. Dr. Porco continued to explain that "(T)he tidal flexing occurring now is not enough to account for all the heat presently coming out of Enceladus. One way out of this dilemma is to assume that some of the heat observed today was generated and stored internally in the past... (N)ow that the orbit's eccentricity has lessened, the heat emanating from the interior is a combination of heat produced today and in the past." Discovered on March 31, 2005, by a team of planetary scientists led by Dr. Michael E. Brown of the California Institute of Technology (Caltech) in Pasadena, Makemake was initially dubbed 2005 FY 9, when Dr. Brown and his colleagues, announced its discovery on July 29, 2005. The team of astronomers had used Caltech's Palomar Observatory near San Diego to make their discovery of this icy dwarf planet, that was later given the minor-planet number of 136472. Makemake was classified as a dwarf planet by the International Astronomical Union (IAU) in July 2008. Dr. Brown's team of astronomers had originally planned to delay announcing their discoveries of the bright, icy denizens of the Kuiper Belt--Makemake and its sister world Eris--until additional calculations and observations were complete. However, they went on to announce them both on July 29, 2005, when the discovery of Haumea--another large icy denizen of the outer limits of our Solar System that they had been watching--was announced amidst considerable controversy on July 27, 2005, by a different team of planetary scientists from Spain. The discovery of a moon for Makemake may have solved one perplexing puzzle concerning this distant, icy object. Earlier infrared studies of the dwarf planet showed that while Makemake's surface is almost entirely frozen and bright, some areas seem to be warmer than other areas. Astronomers had suggested that this discrepancy may be the result of our Sun warming certain dark patches on Makemake's surface. However, unless Makemake is in a special orientation, these mysterious dark patches should cause the ice dwarf's brightness to vary substantially as it rotates. But this amount of variability has not been observed.