Dark Matter Gundam Torso

Dark matter is a form of matter thought to account for approximately 85% of the matter in the universe and about a quarter of its total energy density. Most dark matter is thought to be non-baryonic in nature, possibly being composed of some as-yet undiscovered subatomic particles. [a] Its presence is implied in a variety of astrophysical observations, including gravitational effects which cannot be explained by accepted theories of gravity unless more matter is present than can be seen. For this reason, most experts[who?] think dark matter to be abundant in the universe and to have had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with observable electromagnetic radiation, such as light, and is thus invisible to the entire electromagnetic spectrum, making it undetectable using existing astronomical instruments. Primary evidence for dark matter comes from calculations showing many galaxies would fly apart instead of rotating, or would not have formed or move as they do, if they did not contain a large amount of unseen matter. Other lines of evidence include observations in gravitational lensing, from the cosmic microwave background, also astronomical observations of the observable universe’s current structure, the formation and evolution of galaxies, mass location during galactic collisions, and the motion of galaxies within galaxy clusters. In the standard Lambda-CDM model of cosmology, the total mass–energy of the universe contains 5% ordinary matter and energy, 27% dark matter and 68% of an unknown form of energy known as dark energy. Thus, dark matter constitutes 85%[b] of total mass, while dark energy plus dark matter constitute 95% of total mass–energy content.



The new findings are an independent line of evidence that hydrothermal activity is taking place in the subsurface ocean of Enceladus. Earlier results, published in March 2015, indicated hot water is interacting with rock beneath the sea of this distant moon. The new discoveries support that conclusion and add that the rock appears to be reacting chemically to produce the hydrogen. Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. This gigantic "King of Planets" is considered by some astronomers to be a "failed star". It is about as large as a gas giant planet can be, and still be a planet. It is composed of approximately 90% hydrogen and 10% helium, with small amounts of water, methane, ammonia, and rocky grains mixed into the brew. If any more material were added on to this immense planet, gravity would hug it tightly--while its entire radius would barely increase. A baby star can grow to be much larger than Jupiter. However, a true star harbors its own sparkling internal source of heat--and Jupiter would have to grow at least 80 times more massive for its furnace to catch fire.