Dark Matter Curry 1 Shoes

Primary evidence for dark matter comes from calculations showing that many galaxies would fly apart, or that they would not have formed or would not move as they do, if they did not contain a large amount of unseen matter. Other lines of evidence include observations in gravitational lensing and in the cosmic microwave background, along with astronomical observations of the observable universe’s current structure, the formation and evolution of galaxies, mass location during galactic collisions, and the motion of galaxies within galaxy clusters. In the standard Lambda-CDM model of cosmology, the total mass–energy of the universe contains 5% ordinary matter and energy, 27% dark matter and 68% of an unknown form of energy known as dark energy. Thus, dark matter constitutes 85%[a] of total mass, while dark energy plus dark matter constitute 95% of total mass–energy content.

Ganymede: Ganymede is both the largest moon of Jupiter, our Solar System's planetary behemoth, as well as the largest moon in our entire Solar system. Observations of Ganymede by the HST in 2015 suggested the existence of a subsurface saline ocean. This is because patterns in auroral belts and rocking of the magnetic field hinted at the presence of an ocean. It is estimated to be approximately 100 kilometers deep with a surface situated below a crust of 150 kilometers. These icy moon-worlds are the next important step in the scientific quest for the Holy Grail of life beyond our own planet. It is a strange era in human history. Astronomers have collected large amounts of data revealing bewitching clues that habitable ocean moon-worlds may be out there, within the family of our very own Star. Humanity is poised at the beginning of a new era. Sophisticated new technology might very soon answer the profound, and very ancient question, "Are we alone?" We live in a Cosmic "shooting gallery". Objects inhabiting our Solar System have been profusely and mercilessly blasted by showering asteroids and comets for billions and billions of years. However, planets and large moons have their way of smoothing away the scars--their strong gravity pulls them into a nice ball-like spherical shape. Furthermore, some of these larger spheres possess sufficient internal heat to cause flows of fiery lava and other volcanic features that can fill in the scars of impact craters. A few such large bodies are blasted by strong winds and pouring rains, which also erode away the pockmarks left on their surfaces by showering impactors.