Comet Rosetta Space Mission

On 6 June 2014, water vapor was detected being released at a rate of roughly 1 litre per second (0. 26 US gallons per second) when Rosetta was 360,000 km (220,000 mi) from Churyumov–Gerasimenko and 3. 9 AU (580 million km) from the Sun. On 14 July 2014, images taken by Rosetta showed that its nucleus is irregular in shape with two distinct lobes. The size of the nucleus was estimated to be 3. 5×4 km (2. 2×2. 5 mi). Two explanations for its shape were proposed at the time: that it was a contact binary, or that its shape may have resulted from asymmetric erosion due to ice sublimating from its surface to leave behind its lobed shape. By September 2015, mission scientists had determined that the contact binary hypothesis was unambiguously correct.



Dr. Carolyn Porco, a planetary scientist and leader of the Imaging Science team for Cassini, explained to the press in March 2012 that "More than 90 jets of all sizes near Enceladus's south pole are spraying water vapor, icy particles, and organic compounds all over the place. Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth's oceans." In the Eastern world, such as in China and India, the moon is actually the primary consideration in studies of astrology. The moon signs and cycles are used to determine the best time for activities, and is a part of daily life. This may seem backward to some, but actually results in more accurate predictions in many cases than Western astrology can ascertain. This gigantic "King of Planets" is considered by some astronomers to be a "failed star". It is about as large as a gas giant planet can be, and still be a planet. It is composed of approximately 90% hydrogen and 10% helium, with small amounts of water, methane, ammonia, and rocky grains mixed into the brew. If any more material were added on to this immense planet, gravity would hug it tightly--while its entire radius would barely increase. A baby star can grow to be much larger than Jupiter. However, a true star harbors its own sparkling internal source of heat--and Jupiter would have to grow at least 80 times more massive for its furnace to catch fire.