Cassini-Huygens Saturn

Launched aboard a Titan IVB/Centaur on October 15, 1997, Cassini was active in space for nearly 20 years, with 13 years spent orbiting Saturn and studying the planet and its system after entering orbit on July 1, 2004. The voyage to Saturn included flybys of Venus (April 1998 and July 1999), Earth (August 1999), the asteroid 2685 Masursky, and Jupiter (December 2000). The mission ended on September 15, 2017, when Cassini’s trajectory took it into Saturn’s upper atmosphere and it burned up in order to prevent any risk of contaminating Saturn’s moons, which might have offered habitable environments to stowaway terrestrial microbes on the spacecraft. The mission is widely perceived[by whom?] to have been successful beyond expectations. NASA’s Planetary Science Division Director, Jim Green, described Cassini-Huygens as a “mission of firsts”, that has revolutionized human understanding of the Saturn system, including its moons and rings, and our understanding of where life might be found in the Solar System. [citation needed]



Scientists, seekers of truth by definition, would approach the subject from the null point of view, attempting to prove, in this case, that NASA DID go to the moon. Because the hoax theorists are taking the opposite tack, and because they stretch their case based solely on the photographic evidence, one must suspect both their academic pedigree and their intentions. Until 2004, no spacecraft had visited Saturn for more than twenty years. Pioneer 11 took the very first close-up images of Saturn when it flew past in 1979. After that flyby, Voyager 1 had its rendezvous about a year later, and in August 1981 Voyager 2 had its brief, but glorious, encounter. Nearly a quarter of a century then passed before new high-resolution images of this beautiful, ringed planet were beamed back to Earth. GRAIL has also generated new maps showing lunar crustal thickness. These maps have managed to uncover still more large impact basins on the near-side hemisphere of Earth's Moon--revealing that there are fewer such basins on the far-side, which is the side that is always turned away from Earth. This observation begs the question: How could this be if both hemispheres were on the receiving end of the same number of crashing, impacting, crater-excavating projectiles? According to GRAIL data, the answer to this riddle is that most of the volcanic eruptions on Earth's Moon occurred on its near-side hemisphere.