Blue Giant Hosta

The coolest and least luminous stars referred to as blue giants are on the horizontal branch, intermediate-mass stars that have passed through a red giant phase and are now burning helium in their cores. Depending on mass and chemical composition these stars gradually move bluewards until they exhaust the helium in their cores and then they return redwards to the asymptotic giant branch (AGB). The RR Lyrae variable stars, usually with spectral types of A, lie across the middle of the horizontal branch. Horizontal-branch stars hotter than the RR Lyrae gap are generally considered to be blue giants, and sometimes the RR Lyrae stars themselves are called blue giants despite some of them being F class. The hottest stars, blue horizontal branch (BHB) stars, are called extreme horizontal branch (EHB) stars and can be hotter than main-sequence stars of the same luminosity. In these cases they are called blue subdwarf (sdB) stars rather than blue giants, named for their position to the left of the main sequence on the HR diagram rather than for their increased luminosity and temperature compared to when they were themselves main-sequence stars.

Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. Therefore, even though Enceladus is only Saturn's sixth-largest moon, it is amazingly active. Because of the success of the Cassini mission, scientists now know that geysers spew watery jets hundreds of kilometers out into Space, originating from what may well be a vast subsurface sea. These jets, which erupt from fissures in the little moon's icy shell, whisper a siren's song to bewitched astronomers. This is because the jets suggest that the icy moon may harbor a zone where life might have evolved. The jets dramatically spray water ice from numerous fissures near the south pole, that have been playfully termed "tiger stripes." The "tiger stripes" look like giant scratches made by a tiger's raking claws. Several possibilities could provide an answer as to why the moon would have charcoal-black surface patches, even though it is circling a dwarf planet that is as bright as freshly fallen snow. One theory that has been suggested proposes that, unlike larger objects such as Makemake, its own little companion moon is so small that it cannot gravitationally keep a grip onto a bright and icy crust, which then sublimates, undergoing a sea-change from solid to gas under the melting influence of warming sunlight. This would make the little moon akin to comets and other KBOs, many of which are well-coated with very dark material.