Black Holes and Spaghettification

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.



The team of scientists used data gathered by NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, composed of a duo of twin spacecraft that circled Earth's Moon throughout 2012, each measuring the push and pull of the other as an indicator of lunar gravity. A moon is defined as a natural satellite in orbit around another body that, in turn, is in orbit around its Star. The moon is kept in its position by both its own gravity, as well as its host's gravitational grip. Some planets have many moons, some have only a small number, and still others have none at all. Several asteroids inhabiting our Solar System are circled by very small moons, and some dwarf planets--such as Pluto--also host moons. Other than the sun, no other celestial body significantly affects the earth as the moon does. It is well know that the moon affects the rise and fall of the ocean tide. Such is the effect of the gravitational pull between the earth and the moon. Jupiter is easily the largest planet in our solar system. To put its size in context, Jupiter is more than 300 times the mass of Earth. Here is the interesting part; Jupiter has 63 moons that orbit it and yet it is not the planet in the Solar System with the most moons. That honor belongs to the ringed-planet Saturn, which has 66 moons identified so far. Pluto, the farthest flung among the nine planets, has been the subject of heated debate on whether it really qualifies to be considered a planet. Nowadays, it is classified as a dwarf planet. Its orbit around the Sun is somewhat heavily elliptical. In fact, there are instances where Pluto is actually closer to the Sun than Neptune, the planet that precedes it.