Black Hole Theory Parallel Universe

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.



For this reason, astronomers have for years considered the possibility that hydrocarbon lakes and seas might exist on the surface of this misty moisty moon. The data derived from Cassini/Huygens validated this prediction. During its long and productive mission, now over, Cassini revealed that almost 2% of Titan's entire bizarre surface is coated wth gasoline-like liquids. After a long and dangerous journey through the space between planets, the Cassini/Huygens Spacecraft reached Saturn on July 1, 2004. On December 25, 2004, the Huygens Probe was purposely liberated from the Cassini Orbiter. Huygens then began its historic descent through the dense blanket of golden-orange fog to at last lift the veil hiding Titan's long-hidden face. A Lunar Eclipse is when our blue/green globe saunters between the trusty moon and glowing sun, our planet completely blocks the luminous rays of the sun but the moon remains visible.