Black Hole Swirl Light

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

"We don't know how long the Dagwood-sandwich structure would exist. This structure represents a stable state, but various factors could mean the moon doesn't reach this stable state," Dr. Christophe Sotin said in a May 1, 2014 statement. Dr. Sotin is of the JPL. "We developed new operations methods for INMS for Cassini's final flight through Enceladus' plume. We conducted extensive simulations, data analyses, and laboratory tests to identify background sources of hydrogen, allowing us to quantify just how much molecular hydrogen was truly originating from Enceladus itself," explained Dr. Rebecca Perryman in the April 13, 2017 SwRI Press Release. Dr. Perryman is INMS operations technical lead. The Farmer's Almanac defines a blue moon as the third full moon in a season of four full moons. This is the correct definition of a blue moon. Since a season is three months long, most seasons will have three full moons. However, on occasion a season will have four. When this happens, the third is a true blue moon.