Black Hole Interstellar Wallpaper

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

With the GRAIL data, the astronomers were able to map the gravity field both in and around over 1,200 craters on the lunar far side. This region--the lunar highlands--is our Moon's most heavily cratered, and therefore oldest, terrain. Heavily cratered surfaces are older than smoother surfaces that are bereft of craters. This is because smooth surfaces indicate that more recent resurfacing has occurred, erasing the older scars of impact craters. "Titan is a very active moon. We already know that about its geology and exotic hydrocarbon cycle. Now we can add another analogy with Earth and Mars: the active dust cycle, in which organic dust can be raised from large dune fields around Titan's equator," Dr. Sebastien Rodriguez explained in a September 24, 2018 NASA Jet Propulsion Laboratory (JPL) Press Release. Dr. Rodriguez is an astronomer at the Universite Paris Diderot, France, and the paper's lead author. The JPL is in Pasadena, California. "We developed new operations methods for INMS for Cassini's final flight through Enceladus' plume. We conducted extensive simulations, data analyses, and laboratory tests to identify background sources of hydrogen, allowing us to quantify just how much molecular hydrogen was truly originating from Enceladus itself," explained Dr. Rebecca Perryman in the April 13, 2017 SwRI Press Release. Dr. Perryman is INMS operations technical lead.