Black Hole Eating the Universe

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.



This important measurement was made using Cassini's INMS instrument, which detects gases with the goal of determining their composition. INMS was designed to sample the upper atmosphere of Saturn's large, smoggy moon Titan. However, after Cassini's surprising discovery of a tall plume if icy spray erupting from cracks on Enceladus in 2005, planetary scientists turned its detectors to that small moon. Dr. Porco further believes that Enceladus's orbit could have been much more eccentric in the past. The greater the eccentricity, the greater the tidal squeezing, and the resulting structural variations produce heat. In this case, the heat would have been saved inside the icy moon, melting some of the ice to replenish the liquid water sea. Dr. Porco continued to explain that "(T)he tidal flexing occurring now is not enough to account for all the heat presently coming out of Enceladus. One way out of this dilemma is to assume that some of the heat observed today was generated and stored internally in the past... (N)ow that the orbit's eccentricity has lessened, the heat emanating from the interior is a combination of heat produced today and in the past." The scientists also ruled out the possibility that the mysterious features actually exist on Titan's surface in the form of frozen methane rain or icy lava erupted from cryovolcanoes. Such surface features would show a different chemical signature and would be visible for much longer periods of time than the bright features observed in this study. The bright features were visible from time spans of only 11 hours to five weeks.