Black Hole Amazing Space

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. However, the astronomers will require more HST observations in order to obtain accurate measurements in order to determine if the moon's orbit is circular or elliptical. Preliminary estimates suggest that if the moon is in a circular orbit, it finishes a circle around Makemake in 12 days or longer. The team discovered that the Methone's density would be about 300 kilograms per cubic centimeter. That amounts to less than a third of the density of water, making Methone less dense than any other known moon or asteroid in our Solar System!