Biggest Exoplanet



However, it was little Enceladus that gave astronomers their greatest shock. Even though the existence of Enceladus has been known since it was discovered by William Herschel in 1789, its enchantingly weird character was not fully appreciated until this century. Indeed, until the Voyagers flew past it, little was known about the moon. However, Enceladus has always been considered one of the more interesting members of Saturn's abundantly moonstruck family, for a number of very good reasons. First of all, it is amazingly bright. The quantity of sunlight that an object in our Solar System reflects back is termed its albedo, and this is calculated primarily by the color of the object's ground coating. The albedo of the dazzling Enceladus is almost a mirror-like 100%. Basically, this means that the surface of the little moon is richly covered with ice crystals--and that these crystals are regularly and frequently replenished. When the Voyagers flew over Enceladus in the 1980s, they found that the object was indeed abundantly coated with glittering ice. It was also being constantly, frequently repaved. Immense basins and valleys were filled with pristine white, fresh snow. Craters were cut in half--one side of the crater remaining a visible cavity pockmarking the moon's surface, and the other side completely buried in the bright, white snow. Remarkably, Enceladus circles Saturn within its so-called E ring, which is the widest of the planet's numerous rings. Just behind the moon is a readily-observed bulge within that ring, that astronomers determined was the result of the sparkling emission emanating from icy volcanoes (cryovolcanoes) that follow Enceladus wherever it wanders around its parent planet. The cryovolanoes studding Enceladus are responsible for the frequent repaving of its surface. In 2008, Cassini confirmed that the cryovolanic stream was composed of ordinary water, laced with carbon dioxide, potassium salts, carbon monoxide, and a plethora of other organic materials. Tidal squeezing, caused by Saturn and the nearby sister moons Dione and Tethys, keep the interior of Enceladus pleasantly warm, and its water in a liquid state--thus allowing the cryovolcanoes to keep spewing out their watery eruptions. The most enticing mystery, of course, is determining exactly how much water Enceladus holds. Is there merely a lake-sized body of water, or a sea, or a global ocean? The more water there is, the more it will circulate and churn--and the more Enceladus quivers and shakes, the more likely it is that it can brew up a bit of life. There was a time when Earth had no Moon. About 4.5 billion years ago, when our ancient Solar System was still forming, the dark night sky above our primordial planet was moonless. At this time, the Earth was about 60 percent formed, although it did have a differentiated crust, mantle, and core. This was a very chaotic and violent era in our Solar System's past, with planets first forming out of blobs of primordial dust, gas, and rock. During this era, frequently likened to a "cosmic shooting gallery", collisions between the still-forming planets were commonplace. Orbits were not as orderly as they are now. A moon is a natural body that is in orbit around a planet, and it is kept in place by both the host planet's gravity and the gravity of the moon itself. Some planets possess orbiting moons; some do not. There are several theories explaining how Earth's Moon came to be. At this point, the favored model is termed the giant impact theory, often playfully called the Big Whack or Big Splash theory by astronomers when they are in a humorous frame of mind. These funny nicknames were derived from the central tenet of the theory, which is that a Mars-sized body, named Theia, smacked into the primordial Earth billions of years ago. The collision caused part of our planet's crust to be hurled violently into space. Some of this shattered, somersaulting debris was snared into Earth-orbit, where it formed a host of moonlets that were ultimately pulled together by gravity to evolve into our Moon.