Beagle 2 Esa

Isidis Planitia, an enormous flat sedimentary basin that overlies the boundary between the ancient highlands and the northern plains of Mars, was chosen as the landing site and a 50 by 8 kilometres (31. 1 by 5. 0 mi) ellipse centered on 11°32′N 90°30′E / 11. 53°N 90. 50°E / 11. 53; 90. 50 was selected. The lander was expected to operate for about 180 days and an extended mission of up to one Martian year (687 Earth days) was thought possible. The Beagle 2 lander objectives were to characterise the landing site geology, mineralogy, geochemistry and oxidation state, the physical properties of the atmosphere and surface layers, collect data on Martian meteorology, climate, and search for biosignatures.



Jupiter is circled by a bewitching duo of moons that are potentially capable of nurturing delicate tidbits of life as we know it. Like its more famous sister-moon, Europa, Ganymede might harbor a life-loving subsurface ocean of liquid water in contact with a rocky seafloor. This special arrangement would make possible a bubbling cauldron of fascinating chemical reactions--and these reactions could potentially include the same kind that allowed life to evolve on our own planet! The team discovered that the Methone's density would be about 300 kilograms per cubic centimeter. That amounts to less than a third of the density of water, making Methone less dense than any other known moon or asteroid in our Solar System! Ganymede, and four other moons dwelling in our Sun's family, possess liquid water beneath their frigid crusts of ice. The others are Saturn's moons, Titan and Enceladus, and two other Galilean moons of Jupiter--Europa and Callisto. Planetary scientists think the oceans of Europa and Enceladus are in contact with rock--thus making these two moons high-priority targets for future astrobiology missions.