Asteroid Satellite Little



The screaming winds could be carrying the dust raised from the dunes across great distances, contributing to the global cycle of organic dust on Titan. These would result in effects similar to those that occur on both Earth and Mars. The original goal of Cassini-Huygens was to study Saturn and its large, misty, tortured, moon Titan. Titan, the second-largest moon in our Solar System, after Ganymede of Jupiter, is a world long-shrouded in mystery, hiding behind a thick orange veil, and slashed with hydrocarbon lakes and seas. However, there are other enticing moons known to circle the ringed planet. Saturn's mid-sized icy moons (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, and Phoebe) are enchanting worlds. Each one of these frozen little moons reveals an interesting and unique geology. So far, Saturn is known to sport 62 icy moons! Dr. Porco further believes that Enceladus's orbit could have been much more eccentric in the past. The greater the eccentricity, the greater the tidal squeezing, and the resulting structural variations produce heat. In this case, the heat would have been saved inside the icy moon, melting some of the ice to replenish the liquid water sea. Dr. Porco continued to explain that "(T)he tidal flexing occurring now is not enough to account for all the heat presently coming out of Enceladus. One way out of this dilemma is to assume that some of the heat observed today was generated and stored internally in the past... (N)ow that the orbit's eccentricity has lessened, the heat emanating from the interior is a combination of heat produced today and in the past."